IDEAS home Printed from https://ideas.repec.org/a/ids/ijpdev/v9y2009i1-2-3p188-217.html
   My bibliography  Save this article

Multi-objective design optimisation using multiple adaptive spatially distributed surrogates

Author

Listed:
  • A. Isaacs
  • T. Ray
  • W. Smith

Abstract

This paper introduces an evolutionary algorithm with Multiple Adaptive Spatially Distributed Surrogates (MASDS) for multi-objective optimisation. The core optimisation algorithm is a canonical evolutionary algorithm. The solutions are evaluated using the actual analysis periodically every few generations and evaluated using surrogate models in between. An external archive of the unique solutions evaluated using actual analysis is maintained to train the surrogate models. The solutions in the archive are split into multiple partitions using k-means clustering. A surrogate model based on the Radial Basis Function (RBF) network is built for each partition and its prediction accuracy is computed using a validation set. A surrogate model for a partition is only considered valid if its prediction error is below a user-defined threshold. The performance of a new candidate solution is predicted using a valid surrogate model with the least prediction error in the neighbourhood of that point. The results of six multi-objective test problems are presented in this study, along with a welded beam design optimisation problem. A detailed comparison of the results obtained using Nondominated Sorting Genetic Algorithm II (NSGA-II), the Single Surrogate (SS) model, the Multiple Spatially Distributed Surrogate (MSDS) model and finally, the MASDS model, is presented to highlight the benefits offered by the approach.

Suggested Citation

  • A. Isaacs & T. Ray & W. Smith, 2009. "Multi-objective design optimisation using multiple adaptive spatially distributed surrogates," International Journal of Product Development, Inderscience Enterprises Ltd, vol. 9(1/2/3), pages 188-217.
  • Handle: RePEc:ids:ijpdev:v:9:y:2009:i:1/2/3:p:188-217
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=26179
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijpdev:v:9:y:2009:i:1/2/3:p:188-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=36 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.