IDEAS home Printed from https://ideas.repec.org/a/ids/ijores/v30y2017i4p484-522.html
   My bibliography  Save this article

Hybrid tabu searches for effective airport gate management

Author

Listed:
  • Chun-Hung Cheng
  • Angappa Gunasekaran
  • Sin C. Ho
  • Chuek-Lam Kwan
  • Tobun Dorbin Ng

Abstract

In this research, we are concerned with assigning gates of an airport to arriving and departing aircrafts. This is referred to as the gate assignment problem (GAP). This is an important planning problem, as improper assignment may result in flight delays and inefficient use of airport resources. As solving this problem to optimality is ineffective for many realistic situations, we examine the use of a meta-heuristic. Specifically, we attempt to use tabu search (TS). Although the application of TS in GAP is not new, we explore to introduce path relinking (PR) to improve the performance of TS. In our computation, we find that the PR feature produces desirable results. Further, the experiment using flight data from Incheon International Airport of Korea (ICN) shows that TS+PR performs well when compared with meta-heuristics such as genetic search (GS), simulated annealing (SA), a pure tabu search (TS), and a hybrid of SA and TS.

Suggested Citation

  • Chun-Hung Cheng & Angappa Gunasekaran & Sin C. Ho & Chuek-Lam Kwan & Tobun Dorbin Ng, 2017. "Hybrid tabu searches for effective airport gate management," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 30(4), pages 484-522.
  • Handle: RePEc:ids:ijores:v:30:y:2017:i:4:p:484-522
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=87827
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijores:v:30:y:2017:i:4:p:484-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=170 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.