IDEAS home Printed from https://ideas.repec.org/a/ids/ijores/v23y2015i1p94-129.html
   My bibliography  Save this article

Solving realistic industrial scheduling problems using a multi-objective improved hybrid particle swarm optimisation algorithm

Author

Listed:
  • M.K. Marichelvam
  • T. Prabaharan

Abstract

In this paper, the real-world multistage hybrid flow shop scheduling problem (HFSSP) is contemplated. The HFSSP is strongly an NP-hard (non-deterministic polynomial time hard) problem. Due to their theoretical and practical significance, several researchers have tackled the HFSSPs with a single objective function (makespan). However, many industrial scheduling problems involve multiple conflicting objectives and hence such problems are more complex to solve. But, multi-objective optimisation algorithms are relatively scarce in the HFSSP literature. This paper proposes a hybrid algorithm based on particle swarm optimisation (PSO) for the multi-objective HFSSPs. The proposed multi-objective improved hybrid particle swarm optimisation (MOIHPSO) algorithm searches the Pareto optimal solution for makespan and total flow time objectives. In the proposed MOIHPSO algorithm, two different sub-populations for the two objectives are generated and different dispatching rules are used to improve the solution quality. Moreover, the mutation operator is incorporated in this MOIHPSO to avoid the solution to be trapped in local optima. Data from a steel furniture manufacturing company is used to illustrate the proposed methodology. Simulation results demonstrate the effectiveness of the proposed algorithm.

Suggested Citation

  • M.K. Marichelvam & T. Prabaharan, 2015. "Solving realistic industrial scheduling problems using a multi-objective improved hybrid particle swarm optimisation algorithm," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 23(1), pages 94-129.
  • Handle: RePEc:ids:ijores:v:23:y:2015:i:1:p:94-129
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=68752
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangchen Wang & Xinyu Li & Liang Gao & Peigen Li, 2022. "An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed welding flow shop," Annals of Operations Research, Springer, vol. 310(1), pages 223-255, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijores:v:23:y:2015:i:1:p:94-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=170 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.