IDEAS home Printed from https://ideas.repec.org/a/ids/ijores/v21y2014i2p143-154.html
   My bibliography  Save this article

Applying Dijkstra's algorithm for general shortest path problem with normal probability distribution arc length

Author

Listed:
  • Mohammad Hessam Olya

Abstract

We present a general treatment of shortest path problems by dynamic program in networks having normal probability distributions as arc lengths. We consider a network that may contains cycles. Two operators of sum and comparison need to be adapted for the proposed Dijkstra's algorithm. Because of inefficiency of the methods such as maximum likelihood estimation and moment generating function due to long computational efforts and inaccurate solution results, convolution approach is used to sum two normal probability distributions being employed in the Dijkstra's algorithm. Generally, stochastic shortest path problems are treated using expected values of the arc probabilities, but in the proposed method using distributed observed past data as arc lengths, an integrated value is obtained as the shortest path length. The objective of this paper is to extend the general shortest path problem in dynamic and stochastic networks where link travel times are defined as normal probability distributions. We solve a numerical example to show efficiency of our proposed approach and after finding the shortest path in the network we obtain the shortest path's density function, too.

Suggested Citation

  • Mohammad Hessam Olya, 2014. "Applying Dijkstra's algorithm for general shortest path problem with normal probability distribution arc length," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 21(2), pages 143-154.
  • Handle: RePEc:ids:ijores:v:21:y:2014:i:2:p:143-154
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=64541
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.
    2. Badri, Hossein & Fatemi Ghomi, S.M.T. & Hejazi, Taha-Hossein, 2017. "A two-stage stochastic programming approach for value-based closed-loop supply chain network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijores:v:21:y:2014:i:2:p:143-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=170 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.