IDEAS home Printed from https://ideas.repec.org/a/ids/ijores/v11y2011i1p1-18.html
   My bibliography  Save this article

ARIMA models to forecast demand in fresh supply chains

Author

Listed:
  • Manish Shukla
  • Sanjay Jharkharia

Abstract

This paper presents the application of autoregressive integrated moving average (ARIMA) models to forecast the demand of fresh produce (fruits and vegetables) on a daily basis. Models were built using 25 months sales data of onion from Ahmedabad market in India. Results show that the model can be used to forecast the demand with mean absolute percentage error (MAPE) of 43.14%. This error is within the acceptable limit for fruits and vegetable markets with highly fluctuating demand pattern. The model was validated taking sales data for the same commodity from a different vegetable market. The proposed forecasting model can be used to assist the farmers in determining the volume of daily harvesting for fruits and vegetables.

Suggested Citation

  • Manish Shukla & Sanjay Jharkharia, 2011. "ARIMA models to forecast demand in fresh supply chains," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 11(1), pages 1-18.
  • Handle: RePEc:ids:ijores:v:11:y:2011:i:1:p:1-18
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=40325
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijores:v:11:y:2011:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=170 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.