IDEAS home Printed from https://ideas.repec.org/a/ids/ijnvor/v28y2023i2-3-4p265-280.html
   My bibliography  Save this article

Optimisation of UCB algorithm based on cultural content orientation of film and television in the digital era

Author

Listed:
  • Bin Li

Abstract

To improve the effect of the upper confidence bound (UCB) algorithm in the recommendation of online courses of film and television culture, the paper proposes the recommendation method with time-varying Linucb. Firstly, the time-varying Linucb is introduced, and the UCB is optimised by using the attention mechanism and the short-term and short-term memory network. The results show that the recommendation accuracy of the improved model reaches up to 93%, and the novelty is basically stable at 70%. Compared with UCB, the average course viewing time of users has been extended by two hours, and the average course registration rate has remained stable at over 84%. This indicates that the improved recommendation model has excavated the diverse learning needs of users and can provide accurate course recommendation services for users, which is conducive to optimising the effectiveness of film and television cultural education.

Suggested Citation

  • Bin Li, 2023. "Optimisation of UCB algorithm based on cultural content orientation of film and television in the digital era," International Journal of Networking and Virtual Organisations, Inderscience Enterprises Ltd, vol. 28(2/3/4), pages 265-280.
  • Handle: RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:265-280
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=133865
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:265-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=22 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.