IDEAS home Printed from https://ideas.repec.org/a/ids/ijnvor/v28y2023i2-3-4p199-213.html
   My bibliography  Save this article

AGA-BP algorithm for the evaluation model of teaching quality of dance drama performance

Author

Listed:
  • Yueying Xiao

Abstract

Firstly, the evaluation system was determined, then the AGA and BP neural network algorithms were improved, and finally the entropy weight method was used to construct the dance drama performance teaching quality evaluation model. The optimal hidden layer node of the BP algorithm is 5 and the maximum number of iterations is 120. The corresponding MSE values of the two neural network algorithms, BP and AGA-BP, are 0.0486 and 0.0246 respectively at the maximum number of 120 iterations. The number of convergence of the AGA-BP algorithm is about 6; the convergence value of the sum of squared errors is 0.21, with a 75% improvement in convergence speed and an 80% reduction in the average sum of squared errors. The prediction results of the dance performance quality evaluation show that the prediction accuracy of the AGA-BP prediction model ranges from 0.97 to 1.00.

Suggested Citation

  • Yueying Xiao, 2023. "AGA-BP algorithm for the evaluation model of teaching quality of dance drama performance," International Journal of Networking and Virtual Organisations, Inderscience Enterprises Ltd, vol. 28(2/3/4), pages 199-213.
  • Handle: RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:199-213
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=133869
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijnvor:v:28:y:2023:i:2/3/4:p:199-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=22 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.