IDEAS home Printed from https://ideas.repec.org/a/ids/ijmtma/v7y2005i5-6p407-429.html
   My bibliography  Save this article

Computational model for the steady-state elasto-hydrodynamic interaction in wafer slicing process using wiresaw

Author

Listed:
  • Liqun Zhu
  • Imin Kao

Abstract

A computational model for analysing the steady state elasto hydrodynamic (EHD) interaction in the wiresaw slicing process is presented in this paper. In this model, the coupling of the steady state motion of the translating wire and the hydrodynamic behaviour of the abrasive carrying slurry is studied. A numerical scheme incorporating the finite element method (FEM) and Inexact Newton-GMRES method is employed to solve the governing equations. By applying this method, better computational efficiency can be achieved than by using the typical Newton-Raphson method. Therefore, extensive parametric studies are made possible. Results from the parametric studies indicate that the noncontact floating machining mechanism dominates the wafer slicing process using the wiresaw. Direct contact machining, however, also may occur when the contact span between the wire and the ingot is short, coupled with the lack of slurry. Simulation results also show that too large a bow angle of the wire may cause the breakdown of proper EHD condition, resulting in the ductile ploughing of abrasive particles on the ingot surface. This computational model can provide insights into the mechanism of the wiresaw slicing process, and suggest process control methods to facilitate industrial wafer slicing process using slurry wiresaws.

Suggested Citation

  • Liqun Zhu & Imin Kao, 2005. "Computational model for the steady-state elasto-hydrodynamic interaction in wafer slicing process using wiresaw," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 7(5/6), pages 407-429.
  • Handle: RePEc:ids:ijmtma:v:7:y:2005:i:5/6:p:407-429
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=7694
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmtma:v:7:y:2005:i:5/6:p:407-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=21 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.