IDEAS home Printed from https://ideas.repec.org/a/ids/ijmtma/v38y2024i4-5p382-405.html
   My bibliography  Save this article

Automatic human face recognition system of image processing based on BP neural network paradigm

Author

Listed:
  • Pei Yang
  • Guoqiang You

Abstract

Observation video analysis is useful in recognising human faces in crowded and coinciding scenarios. Overlapping images result in false recognition due to non-semantic textural features. The boundary analysis varies for this process, generating segments exceeding masks of the original image. Backpropagation learning (BPL) based textural-edge detection and recognition model (TED-RM) is designed to resolve this issue. The proposed model exploits the masked and un-masked textural features for identifying the semantics of the input. After this identification process, appropriate features are analysed for semantics and correlation with the inward and overlapping video image input edges. The masked and un-masked regions' semantic features are recurrently correlated with the previous datasets for independent human faces. The mapping feature points are identified and correlated with the actual edge of the training input. The non-semantic edge points are classified for further training and validation to detect errors in further input analysis. The proposed TED-RM improves 10.84% high accuracy, 11.5% less processing time, 10.2% high true positives, 5.55% less error, and 10.6% high recall compared to existing methods.

Suggested Citation

  • Pei Yang & Guoqiang You, 2024. "Automatic human face recognition system of image processing based on BP neural network paradigm," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 38(4/5), pages 382-405.
  • Handle: RePEc:ids:ijmtma:v:38:y:2024:i:4/5:p:382-405
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=139510
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmtma:v:38:y:2024:i:4/5:p:382-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=21 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.