IDEAS home Printed from https://ideas.repec.org/a/ids/ijmtma/v38y2024i4-5p321-341.html
   My bibliography  Save this article

Design of computer image automatic processing system based on artificial intelligence algorithm

Author

Listed:
  • Guoqiang You

Abstract

Automatic image processing systems are applied for recognising human faces in crowds, person identification, and face matching applications. The varying textures, input representation, and position impact detection accuracy and recognition. Therefore, this article introduces an automatic image processing method (AIPM) for face recognition (FR) using deep learning (DL) paradigm. This method extracts the textural features based on the image position and classifies them based on pixel mapping. Semantic (even) and uneven pixel variations are observed in the classification process. The semantic classified pixels are used for correlating different image segments that are further used for training the learning network. The uneven pixels classified using DL is discarded to prevent recognition errors. The DL paradigm verifies the pixel position and coordinate mapping between different inputs. The detection is improved based on the classified output for semantic and uneven pixels. The training is based on semantic and mapping pixels, for which the training is improvised using erroneous pixels. Therefore, precision is improved with controlled analysis complexity.

Suggested Citation

  • Guoqiang You, 2024. "Design of computer image automatic processing system based on artificial intelligence algorithm," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 38(4/5), pages 321-341.
  • Handle: RePEc:ids:ijmtma:v:38:y:2024:i:4/5:p:321-341
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=139501
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmtma:v:38:y:2024:i:4/5:p:321-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=21 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.