IDEAS home Printed from https://ideas.repec.org/a/ids/ijmtma/v38y2024i4-5p302-320.html
   My bibliography  Save this article

Image dehazing network based on improved convolutional neural network

Author

Listed:
  • Changxiu Dai

Abstract

Image dehazing enhances its quality by restoring the actual pixels influenced by poor light and intensity due to environmental and other factors. Hazy images are rectified to improve visibility, guidance, and object recognition through channel attribute corrections. This article introduces a pre-emptive dehazing network (PDN) using an improved convolutional neural network (ICNN) for single to multi-image dehazing. In the proposed method, neural network layers are operated for intensity-based single and multi-feature analysis. The image is split based on intensity pixels for identifying the channel corrections. This channel correction and intensity verifications are processed using CNN in different independent layers. In the CNN training, the channel correction from the hidden layers and pixel correlation from the external dataset is performed for dehazing the image pixels. The dehazed pixels are organised based on the original input organisation for verifying the similarity measure. The proposed method's performance is validated utilising the metrics similarity, error, precision, F1-score, and time complexity.

Suggested Citation

  • Changxiu Dai, 2024. "Image dehazing network based on improved convolutional neural network," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 38(4/5), pages 302-320.
  • Handle: RePEc:ids:ijmtma:v:38:y:2024:i:4/5:p:302-320
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=139491
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmtma:v:38:y:2024:i:4/5:p:302-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=21 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.