IDEAS home Printed from https://ideas.repec.org/a/ids/ijmtma/v37y2023i2p184-198.html
   My bibliography  Save this article

An optimisation method of factory terminal logistics distribution route based on K-means clustering

Author

Listed:
  • Hui Zhang

Abstract

Aiming at the problems of scattered logistics data and low logistics distribution efficiency in the existing factory end logistics distribution route planning methods, a factory end logistics distribution route optimisation method based on K-means clustering is proposed. Firstly, information entropy is introduced to optimise the classical K-means dynamic clustering algorithm to collect the factory end logistics distribution data. Then, a priori clustering insertion algorithm is used to process the redundant data in the collected logistics distribution data. The priority characteristics of logistics distribution nodes and the subset of distribution service requirements are established and the end distribution route planning process is designed. Finally, by setting the starting point of collection and distribution route through the process, determine the data weight in the distribution dataset, the optimal route of factory end logistics distribution to realise optimisation. The results show that this method has low cost and time-consuming less than 0.3 h.

Suggested Citation

  • Hui Zhang, 2023. "An optimisation method of factory terminal logistics distribution route based on K-means clustering," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 37(2), pages 184-198.
  • Handle: RePEc:ids:ijmtma:v:37:y:2023:i:2:p:184-198
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=131305
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmtma:v:37:y:2023:i:2:p:184-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=21 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.