IDEAS home Printed from https://ideas.repec.org/a/ids/ijmtma/v16y2009i1-2p22-41.html
   My bibliography  Save this article

A parallel hybrid ant colony optimisation approach for job-shop scheduling problem

Author

Listed:
  • Haipeng Zhang
  • Mitsuo Gen

Abstract

In this paper, we combine ACO with some randomised dispatching heuristics and propose a special transition rule for finding the best schedule to the JSP problems. Moreover, a special critical path-based local search is also combined to improve the best solutions by reducing the idle time. In order to gain higher efficiency of the proposed algorithm and avoid the early convergence in local optimal solution, we enhance the hybrid ACO by building a parallel hybrid Ant Colony Optimisation (ph-ACO) algorithm. Some numerical examples are used to demonstrate the performance of the ph-ACO and we can find that the proposed ph-ACO algorithm with Longest Remaining processing Time (LRT) and Longest Remaining processing time Excluding the operation under consideration (LRE) can both improve the efficiency of the algorithm obviously. Furthermore, we also decide the appropriate parameter setting of β is around 2. Finally, after comparing with hybrid Genetic Algorithm (GA) by solving same benchmark problems, the experimental results show the proposed ph-ACO outperforms traditional ACO and hybrid GA.

Suggested Citation

  • Haipeng Zhang & Mitsuo Gen, 2009. "A parallel hybrid ant colony optimisation approach for job-shop scheduling problem," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 16(1/2), pages 22-41.
  • Handle: RePEc:ids:ijmtma:v:16:y:2009:i:1/2:p:22-41
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=21502
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chettha Chamnanlor & Kanchana Sethanan & Mitsuo Gen & Chen-Fu Chien, 2017. "Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1915-1931, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmtma:v:16:y:2009:i:1/2:p:22-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=21 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.