IDEAS home Printed from https://ideas.repec.org/a/ids/ijmtma/v15y2008i2p246-252.html
   My bibliography  Save this article

Design of a capillary viscometer with numerical and computational methods

Author

Listed:
  • Ali Shah
  • Dermot Brabazon
  • Lisa Looney

Abstract

A high temperature and shear rate capillary viscometer has been designed, constructed and recently commissioned. This device will be used to measure the viscosity of semi-solid metals under the high temperature and shear rate conditions, similar to those found in industry. Design criteria for the device included a requirement for a highly controllable temperature (±1°C) up to 650°C, capability for injection shear rates above 10,000s−1 and controllable injection profiles. The design of this viscometer was aided with the use of numerical modelling methods based on a power law thixotropic fluid flow relation. This analysis allowed calculation of required injection speeds and expected system forces. Computational modelling work, based on current power law fluid models, was also performed in order to investigate how the viscosity would be expected to fluctuate with shear rate and fraction solid. This data could then be used to compare with experimental work. The computational model was a 2D two-phase theoretical unsteady state model. This was used to evaluate the viscosity of semi-solid metals passing through the designed capillary viscometer at injection speeds of 0.075, 0.5 and 1 m/sec. The effects of fractions solid (fs) of the metal from 0.25, 0.3, 0.33 and 0.50 were also investigated. Strong correlations between these parameters and the resulting viscosity were noted.

Suggested Citation

  • Ali Shah & Dermot Brabazon & Lisa Looney, 2008. "Design of a capillary viscometer with numerical and computational methods," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 15(2), pages 246-252.
  • Handle: RePEc:ids:ijmtma:v:15:y:2008:i:2:p:246-252
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=19663
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmtma:v:15:y:2008:i:2:p:246-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=21 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.