IDEAS home Printed from https://ideas.repec.org/a/ids/ijmore/v8y2016i1p28-59.html
   My bibliography  Save this article

A simulation- and genetic algorithm-based optimisation of closed-loop multi-echelon inventory system

Author

Listed:
  • Rohit Kapoor
  • Bhavin J. Shah
  • Nita H. Shah

Abstract

The objective of this research is to develop a genetic algorithm (GA)-based optimisation approach for a multi-echelon closed-loop inventory system of items, which are repairable in nature. In the context of the passenger transportation industry, engineering aggregates like engines, alternators, axles and tyres are representative examples of such systems. The present work is motivated by a real-life example of state-owned transport corporation having more than 9,000 buses. Operationally, the corporation is divided across several depots (the lower most echelon) and divisions (the next higher echelon). The contribution from this research is manifold. In terms of specific insights, it is established that keeping a higher base stock of spare tyres at the divisions than at the depots is operationally better. This is a consequence of the risk pooling effect. The present research enables us to understand the optimal policy parameters of a complex multi-echelon inventory system. The whole optimisation approach and the simulation model can be generalised and can fit well in several other related problems and their contexts. Typically, the approach is applicable to the problems of repairable-parts inventory related to industries with heavy utilisation of equipments like the chemical and the petrochemical industries.

Suggested Citation

  • Rohit Kapoor & Bhavin J. Shah & Nita H. Shah, 2016. "A simulation- and genetic algorithm-based optimisation of closed-loop multi-echelon inventory system," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 8(1), pages 28-59.
  • Handle: RePEc:ids:ijmore:v:8:y:2016:i:1:p:28-59
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=73278
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmore:v:8:y:2016:i:1:p:28-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=320 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.