IDEAS home Printed from https://ideas.repec.org/a/ids/ijmore/v5y2013i6p663-692.html
   My bibliography  Save this article

An interior boundary pivotal solution algorithm for linear programmes with the optimal solution-based sensitivity region

Author

Listed:
  • Hossein Arsham
  • Angappa Gunasekaran

Abstract

We have developed a full gradient method that consists of three phases. The initialisation phase provides the initial tableau that may not have a full set of basis. The push phase uses a full gradient vector of the objective function to obtain a feasible vertex. This is then followed by a series of pivotal steps using the sub-gradient, which leads to an optimal solution (if exists) in the final iteration phase. At each of these iterations, the sub-gradient provides the desired direction of motion within the feasible region. The algorithm hits and/or moves on the constraint hyper-planes and their intersections to reach an optimal vertex (if exists). The algorithm works in the original decision variables and slack/surplus space, therefore, there is no need to introduce any new extra variables such as artificial variables. The simplex solution algorithm can be considered as a sub-more efficient. Given a linear programme has a known unique non-degenerate primal/dual solution; we develop the largest sensitivity region for linear programming models-based only the optimal solution rather than the final tableau. It allows for simultaneous, dependent/independent changes on the cost coefficients and the right-hand side of constraint. Numerical illustrative examples are given.

Suggested Citation

  • Hossein Arsham & Angappa Gunasekaran, 2013. "An interior boundary pivotal solution algorithm for linear programmes with the optimal solution-based sensitivity region," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 5(6), pages 663-692.
  • Handle: RePEc:ids:ijmore:v:5:y:2013:i:6:p:663-692
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=57489
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmore:v:5:y:2013:i:6:p:663-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=320 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.