IDEAS home Printed from https://ideas.repec.org/a/ids/ijmore/v10y2017i3p342-369.html
   My bibliography  Save this article

Some more average distance results

Author

Listed:
  • Trevor S. Hale
  • Heather S. Lutz
  • Faizul Huq

Abstract

The purpose of this study is to present a taxonomy of expected distance functions (EDFs). An EDF is the expected (where expected is used in the strict probabilistic sense) distance formula for a given metric between two algebraically defined regions (e.g., the expected Euclidean distance between a semi-circle of radius r centred at (x1, y1) that has a known bivariate probability density function in r and θ and a line segment beginning at (x2, y2) and ending at (x3, y3) that has a known probability density function along its length). A modest library of EDFs for various metrics (rectilinear, Euclidean, Tchebychev, etc.) between pairs of common geometric shapes (e.g., lines, semi-circles, rectangles, etc.) is presented. The taxonomy of EDFs contained herein is by no means meant to be an exhaustive list. Indeed, it is limited in scope to those considered to be of practical importance to geographic information, transportation science, and mathematical modelling professionals.

Suggested Citation

  • Trevor S. Hale & Heather S. Lutz & Faizul Huq, 2017. "Some more average distance results," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 10(3), pages 342-369.
  • Handle: RePEc:ids:ijmore:v:10:y:2017:i:3:p:342-369
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=83189
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmore:v:10:y:2017:i:3:p:342-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=320 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.