IDEAS home Printed from https://ideas.repec.org/a/ids/ijmefi/v5y2012i4p370-394.html
   My bibliography  Save this article

Forecasting foreign exchange rates using artificial neural networks: a trader's approach

Author

Listed:
  • Adam Stokes
  • Ahmed S. Abou-Zaid

Abstract

This study investigates the use of two different types of the Artificial Neural Networks (ANNs), Feed-Forward (FF) Neural Network and Nonlinear Autoregressive with Exogenous Input (NARX) neural network, in forecasting the exchange rate of the US dollar against the three major currencies: the Euro, the Pound and the Yen. Although the ANNs technique is not very common in economic discipline, the results are expected to be more accurate in terms of market timing ability and sign prediction than those of the standard econometric techniques such as ARMA. ANNs are, in fact, capable of dealing with high-frequency data as well as the nonlinearities in exchange rate movements. Our results support the notion that ANNs is an effective method in forecasting the exchange rates. The NARX networks output shows a significant market timing ability. Both FF and NARX proved to forecast at a higher accuracy (sign prediction) than random walk and ARMA models.

Suggested Citation

  • Adam Stokes & Ahmed S. Abou-Zaid, 2012. "Forecasting foreign exchange rates using artificial neural networks: a trader's approach," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 5(4), pages 370-394.
  • Handle: RePEc:ids:ijmefi:v:5:y:2012:i:4:p:370-394
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=52502
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalina Lucia COCIANU & Mihai-Serban AVRAMESCU, 2018. "New Approaches of NARX-Based Forecasting Model. A Case Study on CHF-RON Exchange Rate," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 22(2), pages 5-13.
    2. Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmefi:v:5:y:2012:i:4:p:370-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=218 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.