IDEAS home Printed from https://ideas.repec.org/a/ids/ijmefi/v1y2008i2p106-120.html
   My bibliography  Save this article

Semiparametric estimation of dynamic conditional expected shortfall models

Author

Listed:
  • Juan Carlos Escanciano
  • Silvia Mayoral

Abstract

The paper proposes a simple estimator for a class of Conditional Expected Shortfall risk measures. The estimator is semiparametric, in the sense that it does not require a full specification of the conditional distribution of the data, and it is very simple to compute, being a least squares estimator with a closed form expression. We establish its consistency and asymptotic normality under mild regularity conditions. A simulation study provides evidence of the excellent finite-sample properties of the estimator and an application to some exchange rates highlights the semiparametric aspect of the new estimator.

Suggested Citation

  • Juan Carlos Escanciano & Silvia Mayoral, 2008. "Semiparametric estimation of dynamic conditional expected shortfall models," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 1(2), pages 106-120.
  • Handle: RePEc:ids:ijmefi:v:1:y:2008:i:2:p:106-120
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=19217
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    2. repec:hal:journl:peer-00732534 is not listed on IDEAS
    3. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    4. Juan Carlos Escanciano, 2020. "Uniform Rates for Kernel Estimators of Weakly Dependent Data," Papers 2005.09951, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmefi:v:1:y:2008:i:2:p:106-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=218 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.