IDEAS home Printed from https://ideas.repec.org/a/ids/ijmdma/v9y2008i4p429-440.html
   My bibliography  Save this article

Predicting diffusion of innovative products using neural networks

Author

Listed:
  • Somnath Mukhopadhyay

Abstract

Predicting market growths of innovative products are essential for policy makers, market planners and various hardware and software companies. However, it is difficult to find a model that generalises because both internal and external factors influence the growth process. This study investigated models based on diffusion and connectionist theories to predict diffusions of innovative products. This paper shows that a simple Multi-Layered Perceptron (MLP) neural network can create a very flexible response function to forecast generic diffusion patterns of innovation processes. This study compared performances of MLP and diffusion models on simulated data with varying degrees of uncertainties. MLP models outperformed diffusion models.

Suggested Citation

  • Somnath Mukhopadhyay, 2008. "Predicting diffusion of innovative products using neural networks," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 9(4), pages 429-440.
  • Handle: RePEc:ids:ijmdma:v:9:y:2008:i:4:p:429-440
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=19365
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmdma:v:9:y:2008:i:4:p:429-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=19 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.