IDEAS home Printed from https://ideas.repec.org/a/ids/ijlsma/v34y2019i3p395-410.html
   My bibliography  Save this article

Determination of green vehicle routing problem via differential evolution

Author

Listed:
  • Siwaporn Kunnapapdeelert
  • Ratchaphong Klinsrisuk

Abstract

This paper presents the comparison of pickup and delivery with time window (PDPTW) and green vehicle routing for pickup and delivery problems, with time windows (Green-PDPTW) by using differential evolution (DE) algorithm. The main idea of PDPTW is to design the optimal route for transportation by minimising the total cost. Green-PDPTW aims to design the route by minimising the emission of direct greenhouse gases, i.e., carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). These two concepts were verified by eight standard benchmark instances. DE algorithm is proposed to design the optimal route for these two problems. The computational experiments demonstrate that designing route by minimising greenhouse gases emission provides cleaner routes than designing routes by minimising total cost. However, it is not as economical as considering the minimum total cost as the objective function since it requires more vehicles and total distance than route that designed based on the minimum total cost concept.

Suggested Citation

  • Siwaporn Kunnapapdeelert & Ratchaphong Klinsrisuk, 2019. "Determination of green vehicle routing problem via differential evolution," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 34(3), pages 395-410.
  • Handle: RePEc:ids:ijlsma:v:34:y:2019:i:3:p:395-410
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=103091
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    2. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijlsma:v:34:y:2019:i:3:p:395-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=134 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.