IDEAS home Printed from https://ideas.repec.org/a/ids/ijlsma/v29y2018i3p327-348.html
   My bibliography  Save this article

Multi-objective optimisation of continuous review inventory system under mixture of lost sales and backorders within different constraints

Author

Listed:
  • Marzieh Keshavarz
  • Seyed Hamid Reza Pasandideh

Abstract

This paper presents a continuous review stochastic inventory control system. The demand of each product assumed stochastic. In inventory models, it is common to assume that unsatisfied demand is backordered. We considered mixture of lost sales and backorders for shortages. We optimised inventory system with finding fraction of demand backordered. Also, we considered service level in model to improve customer satisfaction and compete better in retail environment. We considered two conflicting objectives: 1) minimising the total cost; 2) maximising the service level. The goal is to generate more diverse and better non-dominated solutions of reorder point, order size and fraction of demand backordered such that the total inventory cost is minimised and the service level is maximised. We considered constraints such as warehouse space, order quantity and restriction on available budget. Constraints are stochastic and follow normal distribution. Two multi-objective optimiser multi-objective particle swarm optimisation (MOPSO) and non-dominated sorting genetic algorithm (NSGA-II) is proposed to solve the problem. We compared the performance of two proposed algorithms with TOPSIS and statistical method. In this comparison, the optimum values of the NSGA-II parameters were obtained using regression analysis.

Suggested Citation

  • Marzieh Keshavarz & Seyed Hamid Reza Pasandideh, 2018. "Multi-objective optimisation of continuous review inventory system under mixture of lost sales and backorders within different constraints," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 29(3), pages 327-348.
  • Handle: RePEc:ids:ijlsma:v:29:y:2018:i:3:p:327-348
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=89790
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Garces-Jimenez & Jose-Manuel Gomez-Pulido & Nuria Gallego-Salvador & Alvaro-Jose Garcia-Tejedor, 2021. "Genetic and Swarm Algorithms for Optimizing the Control of Building HVAC Systems Using Real Data: A Comparative Study," Mathematics, MDPI, vol. 9(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijlsma:v:29:y:2018:i:3:p:327-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=134 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.