IDEAS home Printed from https://ideas.repec.org/a/ids/ijlsma/v27y2017i1p62-77.html
   My bibliography  Save this article

A genetic algorithm-based approach for unbalanced assignment problem in interval environment

Author

Listed:
  • Asoke Kumar Bhunia
  • Amiya Biswas
  • Subhra Sankha Samanta

Abstract

The goal of this paper is to propose an approach based on genetic algorithm for solving unbalanced assignment problem with lesser number of agents than the number of jobs under the assumption that the cost/time for assigning a job to an agent is interval number. Also an additional constraint on the maximum number of jobs allowable to agent(s) is considered. In the proposed approach, the existing real coded genetic algorithm is extended for interval valued fitness with the help of interval order relations (Bhunia and Samanta, 2014) and two different versions of algorithm based on two crossover operators is developed, one is newly proposed extended one-point crossover and the other, inverse exchange crossover. Then, to test the performance of different versions of the algorithm and also for the practical demonstration of the problem, three test problems are considered and solved. Finally, a fruitful conclusion is drawn regarding the performance of both the versions of genetic algorithm.

Suggested Citation

  • Asoke Kumar Bhunia & Amiya Biswas & Subhra Sankha Samanta, 2017. "A genetic algorithm-based approach for unbalanced assignment problem in interval environment," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 27(1), pages 62-77.
  • Handle: RePEc:ids:ijlsma:v:27:y:2017:i:1:p:62-77
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=83222
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cansu Kandemir & Holly A. H. Handley, 2019. "Work process improvement through simulation optimization of task assignment and mental workload," Computational and Mathematical Organization Theory, Springer, vol. 25(4), pages 389-427, December.
    2. Amnon Rosenmann, 2022. "Computing the sequence of k-cardinality assignments," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1265-1283, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijlsma:v:27:y:2017:i:1:p:62-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=134 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.