IDEAS home Printed from https://ideas.repec.org/a/ids/ijkbde/v13y2023i2-3-4p131-147.html
   My bibliography  Save this article

Research on the analysis of regional economic sustainable development trend based on decision tree classification prediction

Author

Listed:
  • Shimian Zhang
  • Qingqing Li

Abstract

As China's economic development shifts from the stage of high growth to the stage of high quality development, the methods for regional economic sustainable development trend analysis and prediction become increasingly important. In this study, we propose the optimised TGC4.5, SDC4.5 and SGC4.5 models based on decision tree classification and forecasting C4.5 algorithm, combining Taylor series, GINI index, sequence pairs and dynamic time programming, and optimise the data indicators for regional economic sustainability development trend. The experimental results show that the optimised SDC4.5 optimisation algorithm outperforms C4.5 algorithm in modelling speed, with 8 outperforming C4.5 algorithm and 1 tied in the selected 15 dataset experiments. It outperforms C4.5 algorithm in classification accuracy, with 13 outperforming C4.5 algorithm in the selected 15 dataset experiments. The SDC4.5 algorithm model is faster and more accurate as the decision tree depth increases.

Suggested Citation

  • Shimian Zhang & Qingqing Li, 2023. "Research on the analysis of regional economic sustainable development trend based on decision tree classification prediction," International Journal of Knowledge-Based Development, Inderscience Enterprises Ltd, vol. 13(2/3/4), pages 131-147.
  • Handle: RePEc:ids:ijkbde:v:13:y:2023:i:2/3/4:p:131-147
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=133323
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijkbde:v:13:y:2023:i:2/3/4:p:131-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=354 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.