IDEAS home Printed from https://ideas.repec.org/a/ids/ijkbde/v13y2023i1p94-111.html
   My bibliography  Save this article

Intelligent recommendation of educational resources combining Neu-MF and T-S fuzzy control

Author

Listed:
  • Dan Li

Abstract

The research uses Takagi-Sugeno (T-S) fuzzy control combined with neural matrix factorization (Neu MF) model to study the intelligent recommendation of educational resources. The recommendation performance of TS-Neu MF model is compared with other similar recommendation algorithm models under two test sets of E's dx and C er. The results of the experiments show that the TS-Neu MF model outperforms Deep FM by 56.6% in root mean square error (RMSE) metrics and 71.5% in mean absolute error (MAE) metrics, and outperforms the Neu MF model by 33.1% in RMSE metrics and 22.5% in MAE metrics under the E dx dataset. The training loss is about 0.04 lower than the Deep FM model, about 0.006 lower than the BPNN model, and about 0.02 lower than the Neu MF model.

Suggested Citation

  • Dan Li, 2023. "Intelligent recommendation of educational resources combining Neu-MF and T-S fuzzy control," International Journal of Knowledge-Based Development, Inderscience Enterprises Ltd, vol. 13(1), pages 94-111.
  • Handle: RePEc:ids:ijkbde:v:13:y:2023:i:1:p:94-111
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=130221
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijkbde:v:13:y:2023:i:1:p:94-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=354 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.