IDEAS home Printed from https://ideas.repec.org/a/ids/ijitma/v23y2024i3-4p232-243.html
   My bibliography  Save this article

Student's classroom behaviour recognition method based on abstract hidden Markov model

Author

Listed:
  • Guojuan Li

Abstract

In order to improve the standardisation of mutual information index, accuracy rate and recall rate of student classroom behaviour recognition method, this paper proposes a student's classroom behaviour recognition method based on abstract hidden Markov model (HMM). After cleaning the students' classroom behaviour data, improve the data quality through interpolation and standardisation, and then divide the types of students' classroom behaviour. Then, in support vector machine, abstract HMM is used to calculate the output probability density of support vector machine. Finally, according to the characteristic interval of classroom behaviour, we can judge the category of behaviour characteristics. The experiment shows that normalised mutual information (NMI) index of this method is closer to one, and the maximum AUC-PR index can reach 0.82, which shows that this method can identify students' classroom behaviour more effectively and reliably.

Suggested Citation

  • Guojuan Li, 2024. "Student's classroom behaviour recognition method based on abstract hidden Markov model," International Journal of Information Technology and Management, Inderscience Enterprises Ltd, vol. 23(3/4), pages 232-243.
  • Handle: RePEc:ids:ijitma:v:23:y:2024:i:3/4:p:232-243
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=139570
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijitma:v:23:y:2024:i:3/4:p:232-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=18 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.