IDEAS home Printed from https://ideas.repec.org/a/ids/ijitma/v20y2021i1-2p110-131.html
   My bibliography  Save this article

A review on feature selection methods for improving the performance of classification in educational data mining

Author

Listed:
  • Maryam Zaffar
  • Manzoor Ahmed Hashmani
  • K.S. Savita
  • Sameer Ahmad Khan

Abstract

Educational data mining (EDM) evaluates and predicts students' performance that assists to discover important factors affecting students' academic performance and also guides educational managers to make appropriate decisions accordingly. The most common technique for discovering meaningful information from the educational database is classification. The accuracy of classification algorithms on educational data can be increased by applying feature selection algorithms. Feature selection algorithms help in selecting robots and meaningful features for predicting students' performance with high accuracy. This paper presents different EDM approaches for forecasting students' performance using different data mining techniques. In addition, this paper also presents an evaluation of recent classification algorithms and feature selection algorithms used in educational data mining. Furthermore, the paper will guide the researchers on new and possible dimensions in building a prediction model in EDM.

Suggested Citation

  • Maryam Zaffar & Manzoor Ahmed Hashmani & K.S. Savita & Sameer Ahmad Khan, 2021. "A review on feature selection methods for improving the performance of classification in educational data mining," International Journal of Information Technology and Management, Inderscience Enterprises Ltd, vol. 20(1/2), pages 110-131.
  • Handle: RePEc:ids:ijitma:v:20:y:2021:i:1/2:p:110-131
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=114161
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia C. Tusell-Rey & Oscar Camacho-Nieto & Cornelio Yáñez-Márquez & Yenny Villuendas-Rey & Ricardo Tejeida-Padilla & Carmen F. Rey Benguría, 2022. "A Priori Determining the Performance of the Customized Naïve Associative Classifier for Business Data Classification Based on Data Complexity Measures," Mathematics, MDPI, vol. 10(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijitma:v:20:y:2021:i:1/2:p:110-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=18 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.