IDEAS home Printed from https://ideas.repec.org/a/ids/ijisen/v6y2010i1p62-78.html
   My bibliography  Save this article

A computational intelligent approach to estimate the Weibull parameters

Author

Listed:
  • Kouroush Jenab
  • Amir Kazeminia
  • Diane Suk-Ching Liu

Abstract

Fitting probability distributions, like Weibull distribution to data related to electronic components, is an essential activity in warranty forecasting model and lifetime analysing. This paper presents an evolutionary statistical approach (ESA), which yields both accurate and robust parameter estimates of lifetime distribution function for two parameters Weibull. Almost all estimation methods produce accurate results for the large sample size; however, more care must be taken in the selection of the estimation methods for extremely small sample size. It is known, for example, maximum likelihood estimation (MLE) estimates of the shape parameter for the Weibull distribution are biased for small sample sizes and the effect can be increased depending on the amount of censoring. In the Weibull distribution, the scale and shape parameters are calculated as an evaluation function by minimising the product of sum of squared errors (SSE) on both XY axes. Using SSE, the least squares estimation (LSE) and real-coded genetic algorithm methods, a simulation is carried out to compare the quality of these approaches. The results show that the ESA is superior to LSE and real-coded genetic algorithm methods, specifically, for a small sample size of data related to electronic components.

Suggested Citation

  • Kouroush Jenab & Amir Kazeminia & Diane Suk-Ching Liu, 2010. "A computational intelligent approach to estimate the Weibull parameters," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 6(1), pages 62-78.
  • Handle: RePEc:ids:ijisen:v:6:y:2010:i:1:p:62-78
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=33997
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijisen:v:6:y:2010:i:1:p:62-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=188 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.