IDEAS home Printed from https://ideas.repec.org/a/ids/ijisen/v49y2025i2p174-185.html
   My bibliography  Save this article

Machine learning-based conflict-free trajectory generation

Author

Listed:
  • Yun-Xiang Han

Abstract

With the rapid development of the aviation industry, air traffic flow is showing a rapid growth trend, and the mutual influence and interference between aircraft in the airspace are also increasing. In order to ensure the safe and orderly operation of air traffic flow, it is urgent to propose efficient conflict-free trajectory generation methods. The development of artificial intelligence technology provides a new way for the design of conflict-free trajectory generation algorithms. As a consequence, machine learning can be applied to conflict-free trajectory generation. Intelligent agents learn autonomously in their interactions with the environment, thus possessing the ability to make autonomous decisions. Simulation experiments in different scenarios have shown that the algorithm proposed is effective.

Suggested Citation

  • Yun-Xiang Han, 2025. "Machine learning-based conflict-free trajectory generation," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 49(2), pages 174-185.
  • Handle: RePEc:ids:ijisen:v:49:y:2025:i:2:p:174-185
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=144407
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijisen:v:49:y:2025:i:2:p:174-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=188 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.