IDEAS home Printed from https://ideas.repec.org/a/ids/ijisen/v42y2022i1p1-19.html
   My bibliography  Save this article

Personalised resource recommendation method for collaborative tagging system based on machine learning

Author

Listed:
  • Xiaofei Liu

Abstract

In order to overcome the low feasibility of traditional resource recommendation methods, this paper proposes a personalised resource recommendation method based on machine learning. Firstly, the user-based collaborative filtering algorithm is used to calculate user personalised similarity, and then content-based collaborative filtering algorithm is used to calculate resource content similarity through cosine similarity. Combined with user similarity and resource content similarity, a hybrid computing model of resource similarity is established, and personalised recommendation is realised through statistical machine learning. The experimental results show that: the F-measure value of the method can reach 0.97, the coverage rate is maintained above 50%, the popularity is above 0.8, and the MAE value is always the minimum, and its precision is always higher than that of the contrast method. It shows that the proposed method can effectively improve the precision and feasibility of personalised recommendation results.

Suggested Citation

  • Xiaofei Liu, 2022. "Personalised resource recommendation method for collaborative tagging system based on machine learning," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 42(1), pages 1-19.
  • Handle: RePEc:ids:ijisen:v:42:y:2022:i:1:p:1-19
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=126023
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijisen:v:42:y:2022:i:1:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=188 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.