IDEAS home Printed from https://ideas.repec.org/a/ids/ijisen/v22y2016i4p409-422.html
   My bibliography  Save this article

Multi-criteria M-machine SDST flow shop scheduling using modified heuristic genetic algorithm

Author

Listed:
  • D. Satyanarayana
  • M. Pramiladevi

Abstract

The multi-criteria flow shop scheduling problem with sequence dependent setup times (SDST) is one of the most difficult class of scheduling problems. Efficient supervision of heuristics with SDST is one of the significant features to enhance the performance of manufacturing system. In this work, we have formulated multi-criteria decision-making flow shop scheduling problem. It consists of weighted sum of total weighted squared tardiness, makespan, total weighted squared earliness and number of tardy jobs. It is a very effective decision-making for scheduling jobs in modern manufacturing environment. In the present work, three efficient special heuristics based hybrid genetic algorithms (i.e., SHGA1, SHGA2, and SHGA3) are proposed for multi-criteria SDST. Experiments are conducted on the benchmark problems (Taillard, 1993). The performance of three SHGAs are tested, analysed and compared with the help of a defined performance index, known as relative percentage deviation (RPD). The maximum size of the problem is limited to 100 jobs and ten machines. From the results and analysis, the performance of SHGA3 found to be the best.

Suggested Citation

  • D. Satyanarayana & M. Pramiladevi, 2016. "Multi-criteria M-machine SDST flow shop scheduling using modified heuristic genetic algorithm," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 22(4), pages 409-422.
  • Handle: RePEc:ids:ijisen:v:22:y:2016:i:4:p:409-422
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=75203
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijisen:v:22:y:2016:i:4:p:409-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=188 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.