IDEAS home Printed from https://ideas.repec.org/a/ids/ijisen/v17y2014i2p133-151.html
   My bibliography  Save this article

Modelling and optimisation of material removal rate and surface roughness in surface-electrical discharge diamond grinding process

Author

Listed:
  • Shyam Sunder
  • Vinod Yadava

Abstract

Metal matrix composites (MMCs) can be machined using electrical discharge machining (EDM) but the process is found slow. Electrical discharge diamond grinding (EDDG), which is a hybrid machining process (HMP) comprising of diamond grinding (DG) and electrical discharge grinding (EDG), has been found a viable machining method which enhances MRR and produce better surface finish. During EDDG, abrasive grains eradicate the non-conducting material particles of MMCs, and spark discharges thermally softened the surrounding binding material. In the present work, an attempt has been made for modelling of EDDG in surface grinding mode for outputs MRR and average surface roughness (Ra) and inputs wheel speed, depth of cut, workpiece speed, pulse on-time, current and duty factor. Experiments were carried out on a newly self-developed surface grinding setup for EDDG on a die sinking EDM machine for Al-10wt.%Al2O3 composite. Finally, weighted principal component (WPC) is proposed for optimising the machining parameters.

Suggested Citation

  • Shyam Sunder & Vinod Yadava, 2014. "Modelling and optimisation of material removal rate and surface roughness in surface-electrical discharge diamond grinding process," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 17(2), pages 133-151.
  • Handle: RePEc:ids:ijisen:v:17:y:2014:i:2:p:133-151
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=61990
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijisen:v:17:y:2014:i:2:p:133-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=188 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.