IDEAS home Printed from https://ideas.repec.org/a/ids/ijisen/v13y2013i2p250-261.html
   My bibliography  Save this article

Intelligence-based condition monitoring model

Author

Listed:
  • Kamyar Rashidi
  • Kouroush Jenab

Abstract

Condition-based maintenance (CBM) is a maintenance strategy that reduces equipment downtime, production loss, and maintenance cost based on changes in equipment condition (e.g., changes in vibration, changes in power usage, changes in operating performance, changes in temperatures, changes in noise levels, changes in chemical composition, increase in debris content and changes in volume of material). In this study, we present the newly developed condition monitoring model (CMM) based on Bayesian decision theory, which takes vibration signals from the equipment, and classifies them to either normal or abnormal condition. Using conditional risk function, the equipment condition can be classified to either normal or abnormal condition. The conditional risk function is calculated based on loss table and the class posterior probabilities. The developed model can efficiently avoid unnecessary maintenance and make timely actions through analysing the received vibration signals from the equipment. An illustrative example is demonstrated to present the application of the model. Also, the results derived from CMM programme coded in Visual Basic are discussed.

Suggested Citation

  • Kamyar Rashidi & Kouroush Jenab, 2013. "Intelligence-based condition monitoring model," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 13(2), pages 250-261.
  • Handle: RePEc:ids:ijisen:v:13:y:2013:i:2:p:250-261
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=51812
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijisen:v:13:y:2013:i:2:p:250-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=188 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.