IDEAS home Printed from https://ideas.repec.org/a/ids/ijisen/v12y2012i4p394-428.html
   My bibliography  Save this article

A comparative study for optimum short-term forecasting of electricity price with uncertainty

Author

Listed:
  • Ali Azadeh
  • Babak H. Tabrizi
  • Vahid Ebrahimipour

Abstract

This paper presents an integrated algorithm consisting of artificial neural network (ANN), fuzzy linear regression (FLR) and conventional linear regression (CLR) for optimum short-term electricity price forecasting. Eight ANN models and seven well-known FLR models as well as CLR model are considered simultaneously to provide a robust framework for electricity price forecasting. Thus, it can be easily applied to uncertain and complex environments due to its flexibility. The input data are divided into train and test parts to test the results for further times. Data sets are compared with ANN, fuzzy regression (FR) and conventional regression (CR) techniques in a comprehensive empirical process, with respect to mean absolute percent error measure. It is shown that ANN leads to the most efficient outputs, although, sometimes FR models could yield suitable results. Then, the procedure is repeated for normalised data, and recent results are obtained again, which puts a validation on what was concluded before. At last, the research has been practiced in Iran and proved to be efficient, as the circumstances dominating the society do not follow a steady trend. This is the first study that investigates intelligent models for short-term electricity price forecasting with uncertainty.

Suggested Citation

  • Ali Azadeh & Babak H. Tabrizi & Vahid Ebrahimipour, 2012. "A comparative study for optimum short-term forecasting of electricity price with uncertainty," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 12(4), pages 394-428.
  • Handle: RePEc:ids:ijisen:v:12:y:2012:i:4:p:394-428
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=50121
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijisen:v:12:y:2012:i:4:p:394-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=188 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.