IDEAS home Printed from https://ideas.repec.org/a/ids/ijient/v7y2020i1-2-3p107-121.html
   My bibliography  Save this article

S-transform-based efficient copy-move forgery detection technique in digital images

Author

Listed:
  • Rajeev Rajkumar
  • Sudipta Roy
  • Khumanthem Manglem Singh

Abstract

Copy-move forgery (CMF), which copies a part of a picture and pastes it into another location, is one of the common strategies for digital image tampering. Due to the arrival of high-performance hardware and the compact use of image processing software, empowers creating image forgeries easy that are undetectable by the naked eye. For CMF detection, we suggest an efficient and vigorous method that could take care of numerous geometric ameliorations including rotation, scaling, and blurring. In the projected CMF detection system, we use Stockwell transform (S-transform) which hybrids the advantages of both scale invariant feature transform (SIFT) and wavelet transform (WT) to extract the key points and their descriptors from the overlapped image blocks. Furthermore, Euclidean distance (ED) between the overlapped blocks are measured to detect the similarities and to identify the tampered or forged region in the image. Besides, a novel fuzzy min-max neural network-based decision tree (FMMNN-DT) classifier is used to recognise the duplicated regions in the forgery image. The proposed system is tested and validated using MICC-F220 dataset and we present comparison among the proposed outcomes with some existing ones which ensure the significance of the proposed.

Suggested Citation

  • Rajeev Rajkumar & Sudipta Roy & Khumanthem Manglem Singh, 2020. "S-transform-based efficient copy-move forgery detection technique in digital images," International Journal of Intelligent Enterprise, Inderscience Enterprises Ltd, vol. 7(1/2/3), pages 107-121.
  • Handle: RePEc:ids:ijient:v:7:y:2020:i:1/2/3:p:107-121
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=104647
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijient:v:7:y:2020:i:1/2/3:p:107-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.