IDEAS home Printed from https://ideas.repec.org/a/ids/ijidsc/v7y2015i2p115-139.html
   My bibliography  Save this article

Prediction models for ozone in metropolitan area of Mexico City based on artificial intelligence techniques

Author

Listed:
  • Gong Bing
  • Joaquín Ordieres-Meré
  • Claudia Barreto Cabrera

Abstract

Ozone is one of the worst harmful pollutants nowadays which affects the public health, so it is necessary to predict ozone level accurately in order to prevent the public from exposing to the pollution when it exceeds the limits. This study aims to predict daily maximum ozone concentrations in the metropolitan area of Mexico City by using four individual artificial intelligence techniques: multiple linear regression, neural networks, support vector machine, random forest, and two ensemble techniques: linear ensemble and greedy ensemble. Results from the comparison among different artificial intelligence techniques clearly showed that ensemble models, especially linear ensemble model, outperformed the individual artificial intelligence techniques. Moreover, it is concluded that the performance of models is influenced by the time ahead factor for the predictors. The errors of prediction models related to the data of current day are only around 50% of ones corresponding to the data of the previous day. In addition, in order to select the input variables properly, analysis of variance (ANOVA) based on multiple linear regression models was performed. Best model prediction capability also depends on the ranges of input variables.

Suggested Citation

  • Gong Bing & Joaquín Ordieres-Meré & Claudia Barreto Cabrera, 2015. "Prediction models for ozone in metropolitan area of Mexico City based on artificial intelligence techniques," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 7(2), pages 115-139.
  • Handle: RePEc:ids:ijidsc:v:7:y:2015:i:2:p:115-139
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=68756
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meraz, M. & Alvarez-Ramirez, J. & Echeverria, J.C., 2017. "Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 377-386.
    2. Muhammad Muhitur Rahman & Md Shafiullah & Syed Masiur Rahman & Abu Nasser Khondaker & Abduljamiu Amao & Md. Hasan Zahir, 2020. "Soft Computing Applications in Air Quality Modeling: Past, Present, and Future," Sustainability, MDPI, vol. 12(10), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijidsc:v:7:y:2015:i:2:p:115-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=306 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.