IDEAS home Printed from https://ideas.repec.org/a/ids/ijidsc/v3y2011i2p148-172.html
   My bibliography  Save this article

Estimation of true efficient frontier of organisational performance using data envelopment analysis and support vector machine learning

Author

Listed:
  • Kerry Poitier
  • Sohyung Cho

Abstract

Data envelopment analysis (DEA) and stochastic frontier functions (SFF) are two well-known tools for performance and efficiency analysis of profit and non-profit organisations, referred to as decision making units (DMUs). The challenge to traditional DEA is how to account for both managerial and observational errors if present in the analysis, so as to determine true efficient frontiers. This paper proposes a novel methodology to determine true frontiers in a non-parametric environment. Specifically, traditional DEA is integrated with SFF through support vector machine (SVM) learning to provide an adaptive way to estimate true frontiers considering managerial and observational errors. A statistical ratio is utilised to find the true frontiers, and the proposed methodology is applied to a real data set where frontiers are compared to ones obtained by other existing methods. The work in this paper can help organisations to plan a more realistic investment by providing reasonable sense of benchmarking.

Suggested Citation

  • Kerry Poitier & Sohyung Cho, 2011. "Estimation of true efficient frontier of organisational performance using data envelopment analysis and support vector machine learning," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 3(2), pages 148-172.
  • Handle: RePEc:ids:ijidsc:v:3:y:2011:i:2:p:148-172
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=40421
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valero-Carreras, Daniel & Aparicio, Juan & Guerrero, Nadia M., 2021. "Support vector frontiers: A new approach for estimating production functions through support vector machines," Omega, Elsevier, vol. 104(C).
    2. Dulá, J.H. & López, F.J., 2013. "DEA with streaming data," Omega, Elsevier, vol. 41(1), pages 41-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijidsc:v:3:y:2011:i:2:p:148-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=306 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.