IDEAS home Printed from https://ideas.repec.org/a/ids/ijicbm/v2y2009i6p625-637.html
   My bibliography  Save this article

Univariate forecasting of day-ahead hourly electricity demand in the northern grid of India

Author

Listed:
  • Sajal Ghosh

Abstract

Short-term electricity demand forecasts (minutes to several hours ahead) have become increasingly important since the rise of the competitive energy markets. The issue is particularly important for India as it has recently set up a power exchange (PX), which has been operating on day-ahead hourly basis. In this study, an attempt has been made to forecast day-ahead hourly demand of electricity in the northern grid of India using univariate time-series forecasting techniques namely multiplicative seasonal ARIMA and Holt-Winters multiplicative exponential smoothing (ES). In-sample forecasts reveal that ARIMA models, except in one case, outperform ES models in terms of lower RMSE, MAE and MAPE criteria. We may conclude that linear time-series models works well to explain day-ahead hourly demand forecasts in the northern grid of India. The findings of the study will immensely help the players in the upcoming power market in India.

Suggested Citation

  • Sajal Ghosh, 2009. "Univariate forecasting of day-ahead hourly electricity demand in the northern grid of India," International Journal of Indian Culture and Business Management, Inderscience Enterprises Ltd, vol. 2(6), pages 625-637.
  • Handle: RePEc:ids:ijicbm:v:2:y:2009:i:6:p:625-637
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=27180
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    2. Rallapalli, Srinivasa Rao & Ghosh, Sajal, 2012. "Forecasting monthly peak demand of electricity in India—A critique," Energy Policy, Elsevier, vol. 45(C), pages 516-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijicbm:v:2:y:2009:i:6:p:625-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=235 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.