IDEAS home Printed from https://ideas.repec.org/a/ids/ijicbm/v1y2008i4p466-474.html
   My bibliography  Save this article

Univariate time-series forecasting of monthly peak demand of electricity in northern India

Author

Listed:
  • Sajal Ghosh

Abstract

This study forecasts the monthly peak demand of electricity in the northern region of India using univariate time-series techniques namely Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) and Holt-Winters Multiplicative Exponential Smoothing (ES) for seasonally unadjusted monthly data spanning from April 2000 to February 2007. In-sample forecasting reveals that the MSARIMA model outperforms the ES model in terms of lower root mean square error, mean absolute error and mean absolute percent error criteria. It has been found that ARIMA (2, 0, 0) (0, 1, 1)12 is the best fitted model to explain the monthly peak demand of electricity, which has been used to forecast the monthly peak demand of electricity in northern India, 15 months ahead from February 2007. This will help Northern Regional Load Dispatch Centre to make necessary arrangements a priori to meet the future peak demand.

Suggested Citation

  • Sajal Ghosh, 2008. "Univariate time-series forecasting of monthly peak demand of electricity in northern India," International Journal of Indian Culture and Business Management, Inderscience Enterprises Ltd, vol. 1(4), pages 466-474.
  • Handle: RePEc:ids:ijicbm:v:1:y:2008:i:4:p:466-474
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=18626
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    2. Rallapalli, Srinivasa Rao & Ghosh, Sajal, 2012. "Forecasting monthly peak demand of electricity in India—A critique," Energy Policy, Elsevier, vol. 45(C), pages 516-520.
    3. Krzysztof Karpio & Piotr Łukasiewicz & Rafik Nafkha, 2023. "New Method of Modeling Daily Energy Consumption," Energies, MDPI, vol. 16(5), pages 1-24, February.
    4. Majumder, Rajarshi & Ghosh, Subhadip & Chatterjee, Bidisha, 2022. "Energy infrastructure in India: challenges and opportunities," MPRA Paper 120106, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijicbm:v:1:y:2008:i:4:p:466-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=235 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.