IDEAS home Printed from https://ideas.repec.org/a/ids/ijgeni/v18y2002i2-3-4p253-265.html
   My bibliography  Save this article

Introducing uncertain learning in an energy system model: a pilot study using GENIE

Author

Listed:
  • Niclas Mattsson

Abstract

Energy system models based on experience curves are superior to conventional models in their treatment of the dynamics of technological development. However, assuming perfect foresight means that future learning rates are known with certainty, which is not realistic. An optimising model for the global electricity system, GENIE, has been extended to include imperfect foresight of learning rates. Technology cost trajectories are still determined by experience curves, but progress along the curves may follow alternative branches. Information about exactly which branch is currently being followed is not initially available, but may be subsequently revealed and acted upon. Unlike most applications of stochastic programming with recourse, the learning rate uncertainties are not resolved at a predetermined point in time. Instead, this information is only revealed once a certain threshold level of experience has been obtained for the particular technology. To minimise computational difficulty, only two technologies feature experience curve uncertainty - photovoltaic solar cells and fuel cells. The learning rates for these technologies can independently assume high or low values. Model results emphasise the importance of early learning investments in emerging energy technologies. The optimal hedging strategy calculated by GENIE involves significant early investments in both solar PV and fuel cells. An early commitment to emerging technologies is not only a good investment plan when high learning rates are expected, but also an efficient hedging strategy when future learning rates are uncertain. A sensitivity analysis also shows that this investment strategy is surprisingly robust even if high future learning rates are regarded as improbable.

Suggested Citation

  • Niclas Mattsson, 2002. "Introducing uncertain learning in an energy system model: a pilot study using GENIE," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 18(2/3/4), pages 253-265.
  • Handle: RePEc:ids:ijgeni:v:18:y:2002:i:2/3/4:p:253-265
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=963
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    2. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijgeni:v:18:y:2002:i:2/3/4:p:253-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=13 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.