IDEAS home Printed from https://ideas.repec.org/a/ids/ijfmkd/v2y2011i1-2p68-87.html
   My bibliography  Save this article

Intraday high-frequency FX trading with adaptive neuro-fuzzy inference systems

Author

Listed:
  • Abdalla Kablan
  • Wing Lon Ng

Abstract

This paper introduces an adaptive neuro-fuzzy inference system (ANFIS) for financial trading, which learns to predict price movements from training data consisting of intraday tick data sampled at high frequency. The empirical data used in our investigation are five-minute mid-price time series from FX markets. The ANFIS optimisation involves back-testing as well as varying the number of epochs, and is combined with a new method of capturing volatility using an event-driven approach that takes into consideration directional changes within pre-specified thresholds. The results show that the proposed model outperforms standard strategies such as buy-and-hold or linear forecasting.

Suggested Citation

  • Abdalla Kablan & Wing Lon Ng, 2011. "Intraday high-frequency FX trading with adaptive neuro-fuzzy inference systems," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 2(1/2), pages 68-87.
  • Handle: RePEc:ids:ijfmkd:v:2:y:2011:i:1/2:p:68-87
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=38529
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aloud, Monira & Tsang, Edward & Olsen, Richard & Dupuis, Alexandre, 2012. "A directional-change event approach for studying financial time series," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-17.
    2. Edward P. K. Tsang & Ran Tao & Antoaneta Serguieva & Shuai Ma, 2017. "Profiling high-frequency equity price movements in directional changes," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 217-225, February.
    3. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    4. Ma, Junjun & Xiong, Xiong & He, Feng & Zhang, Wei, 2017. "Volatility measurement with directional change in Chinese stock market: Statistical property and investment strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 169-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijfmkd:v:2:y:2011:i:1/2:p:68-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=307 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.