IDEAS home Printed from https://ideas.repec.org/a/ids/ijetpo/v16y2020i5-6p470-492.html
   My bibliography  Save this article

A system dynamics modelling for energy planning and carbon dioxide estimation of the Nigerian power sector

Author

Listed:
  • Babajide Epe Shari
  • Yacouba Moumouni

Abstract

Energy is essential to supporting the modern life-style; it is the main driver to economic development and carbon dioxide (CO2) emissions. Due to associated complexities and uncertainties, decision makers and energy planners face increasing pressure to effectively address energy related challenges, including approaches to low carbon energy provision. This study seeks to develop a long-term, 2010-2050, system dynamics (SD) model of the Nigerian power sector (NPS). The model then helps to investigate ways to bridge the electricity supply and demand gaps by simulating various performance scenarios based on real socio-economic variables and estimation of CO2. A total of six policy scenarios were implemented. These scenarios sought to evaluate the influence of the following four parameters: 1) transmission losses (Tx); 2) time to adjust capacity (TAC); 3) population growth rate (PGR); 4) capacities under construction. Accordingly, results not only showed that the completion of the existing project and the Mambilla multipurpose hydropower (MMHP) would make the NPS 71% energy secured, but also revealed a paradigm shift in CO2 reduction in the planning process considered by the study in contrast to the existing generations. Finally, capability of SD was affirmed by properly capturing feedbacks, delays, and other complexities in the NPS.

Suggested Citation

  • Babajide Epe Shari & Yacouba Moumouni, 2020. "A system dynamics modelling for energy planning and carbon dioxide estimation of the Nigerian power sector," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 16(5/6), pages 470-492.
  • Handle: RePEc:ids:ijetpo:v:16:y:2020:i:5/6:p:470-492
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=109311
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olukorede Tijani Adenuga & Khumbulani Mpofu & Ragosebo Kgaugelo Modise, 2022. "Energy–Carbon Emissions Nexus Causal Model towards Low-Carbon Products in Future Transport-Manufacturing Industries," Energies, MDPI, vol. 15(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetpo:v:16:y:2020:i:5/6:p:470-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=12 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.