IDEAS home Printed from https://ideas.repec.org/a/ids/ijetma/v4y2004i1-2p89-104.html
   My bibliography  Save this article

Aqua ammonia process for simultaneous removal of CO 2 , SO 2 and NO x

Author

Listed:
  • Kevin P. Resnik
  • James T. Yeh
  • Henry W. Pennline

Abstract

Experimental research work in applying aqueous ammonia solution for the simultaneous reduction of acidic gaseous emission from fossil fuel-fired utility plants is currently being performed at the National Energy Technology Laboratory. The traditional monoethanolamine process for CO2 removal suffers the disadvantages of low carbon dioxide loading capacity, equipment corrosion, amine degradation by SO2 and O2 in flue gas, and high energy penalty during absorbent regeneration. The aqueous ammonia process can simultaneously remove CO2, SO2, NOx, plus HCl and HF that may exist in the flue gas. There could be oxidation of SO2 and NO prior to contacting the aqueous ammonia absorbent. Test results pertaining to the ammonia/carbon dioxide reaction in a semi-continuous reactor system are presented. The parametric effects of sparger design, reaction temperature, and ammonia concentration on gas loadings and absorption rates are discussed. Regeneration test results, including solution-cycling between the regeneration and absorption steps to determine a realistic loading capacity for the ammonia solutions are also presented.

Suggested Citation

  • Kevin P. Resnik & James T. Yeh & Henry W. Pennline, 2004. "Aqua ammonia process for simultaneous removal of CO 2 , SO 2 and NO x," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 4(1/2), pages 89-104.
  • Handle: RePEc:ids:ijetma:v:4:y:2004:i:1/2:p:89-104
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=4634
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín, C.F. & Sweatman, M.B. & Brandani, S. & Fan, X., 2016. "Wet impregnation of a commercial low cost silica using DETA for a fast post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 183(C), pages 1705-1721.
    2. Yuta Sakanaka & Shotaro Hiraide & Iori Sugawara & Hajime Uematsu & Shogo Kawaguchi & Minoru T. Miyahara & Satoshi Watanabe, 2023. "Generalised analytical method unravels framework-dependent kinetics of adsorption-induced structural transition in flexible metal–organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetma:v:4:y:2004:i:1/2:p:89-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=11 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.