IDEAS home Printed from https://ideas.repec.org/a/ids/ijetma/v22y2019i1p68-83.html
   My bibliography  Save this article

Wind-assist marine demonstration for ferries: prospects for saving diesel fuel with wind power

Author

Listed:
  • Timothy E. Lipman
  • Jeffrey Lidicker

Abstract

These sailing vessel testing, data collection and analysis project examined the real world potential for a novel carbon-fibre 'wingsail' technology to reduce fuel use in potential passenger ferryboat applications. The project involved building a carbon fibre, computer-controlled wingsail that was then mounted on a 14-metre trimaran test vessel with a complete instrumentation package. The vessel was then operated on the San Francisco Bay over a three-month period. The test results were conclusive that, for a test vessel travelling at seven knots though water on a particular ferry route, up to 25% to 40% of the fuel burned can be saved through the use of the wingsail, depending on wind speed, with a corresponding reduction in greenhouse gases, toxic and criteria pollutant emissions and fuel costs. The estimated fuel efficiency gains will not necessarily translate directly to those at actual ferryboat service speeds (at 17 or more knots) but are encouraging pending further investigations.

Suggested Citation

  • Timothy E. Lipman & Jeffrey Lidicker, 2019. "Wind-assist marine demonstration for ferries: prospects for saving diesel fuel with wind power," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 22(1), pages 68-83.
  • Handle: RePEc:ids:ijetma:v:22:y:2019:i:1:p:68-83
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=101353
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jianyun & Chen, Li, 2023. "A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetma:v:22:y:2019:i:1:p:68-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=11 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.