IDEAS home Printed from https://ideas.repec.org/a/ids/ijenma/v7y2016i3p272-283.html
   My bibliography  Save this article

Image segmentation based on colour and texture features

Author

Listed:
  • C. Mythili
  • V. Kavitha

Abstract

A new segmentation approach is proposed in this paper which combines colour texture features to get accurate segmentation. The input images obtained from Berkeley databases are in RGB colour model. The colour image is transformed from RGB colour space to lab colour space. The statistical colour features are extracted from lab colour space. The fuzzy texture unit is determined by the extraction of local texture information from each pixel. The combined feature extraction of colour and texture are implemented using effective robust kernelised fuzzy C-means (ERKFCM) clustering strategy. It is concluded that ERKFCM method has outperformed quantitatively and qualitatively results in terms of root mean square error (RMSE), Pearson correlation coefficient, structural similarity (SSIM) and time taken when compared to the existing methods in segmentation.

Suggested Citation

  • C. Mythili & V. Kavitha, 2016. "Image segmentation based on colour and texture features," International Journal of Enterprise Network Management, Inderscience Enterprises Ltd, vol. 7(3), pages 272-283.
  • Handle: RePEc:ids:ijenma:v:7:y:2016:i:3:p:272-283
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=78972
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijenma:v:7:y:2016:i:3:p:272-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=187 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.