IDEAS home Printed from https://ideas.repec.org/a/ids/ijenma/v7y2016i2p133-141.html
   My bibliography  Save this article

Optimisation of processing parameters in ECM of AISI 202 using multi objective genetic algorithm

Author

Listed:
  • V. Sathiyamoorthy
  • T. Sekar

Abstract

This paper attempts to optimise the predominant or influencing machining parameters during electrochemical machining (ECM) of AISI 202 austenitic stainless steel which is commonly used in railway rolling stock. The selected influencing parameters are: applied voltage, electrolyte discharge rate and tool feed rate with three levels. Twenty seven experiments were conducted through Design Expert 7.0 software and genetic algorithm (GA) tool was applied to identify the optimum conditions which turn into the best material removal rate (MRR) and surface roughness (SR). The experimental analyses of NaCl aqua's solution reveal that applied voltage of 18 V, tool feed rate of 0.54 mm/min and electrolyte discharge rate of 12 lit/min would be the optimum values in ECM of AISI 202 under the selected conditions, comparing to NaNO3 aqua's solution. For checking the optimality of the developed equation, MRR of 398.666 mm3/min and surface roughness Ra of 2.299135 µm were predicted at applied voltage of 18 V, tool feed rate of 0.54 mm/min and electrolyte discharge rate of 11.99 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions were 391.351 mm3/min and 2.37 µm, the deviation from the predicted performance is less than 4% which has proves the composite desirability of the developed models for MRR and surface roughness.

Suggested Citation

  • V. Sathiyamoorthy & T. Sekar, 2016. "Optimisation of processing parameters in ECM of AISI 202 using multi objective genetic algorithm," International Journal of Enterprise Network Management, Inderscience Enterprises Ltd, vol. 7(2), pages 133-141.
  • Handle: RePEc:ids:ijenma:v:7:y:2016:i:2:p:133-141
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=77528
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijenma:v:7:y:2016:i:2:p:133-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=187 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.