IDEAS home Printed from https://ideas.repec.org/a/ids/ijdsci/v4y2019i1p31-44.html
   My bibliography  Save this article

Privacy preserving solution to prevent classification inference attacks in online social networks

Author

Listed:
  • Agrima Srivastava
  • G. Geethakumari

Abstract

In order to improve their business solutions the data holders often release the social network data and its structure to the third party. This data undergo node and attribute anonymisation before its release. This however does not prevent the users from inference attacks which an un-trusted third party or an adversary would carry out at their end by analysing the structure of the graph. Therefore, there is an utmost necessity to not only anonymise the nodes and their attributes but also to anonymise the edge sets in the released social network graph. Anonymising involves perturbing the actual data which results in utility loss. Ensuring utility and preserving privacy are inversely proportional to each other and is a challenging task. In this work we have proposed, implemented and verified an efficient utility based privacy preserving solution to prevent the third party inference attacks for an online social network graph.

Suggested Citation

  • Agrima Srivastava & G. Geethakumari, 2019. "Privacy preserving solution to prevent classification inference attacks in online social networks," International Journal of Data Science, Inderscience Enterprises Ltd, vol. 4(1), pages 31-44.
  • Handle: RePEc:ids:ijdsci:v:4:y:2019:i:1:p:31-44
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=98357
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijdsci:v:4:y:2019:i:1:p:31-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=429 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.