IDEAS home Printed from https://ideas.repec.org/a/ids/ijdsci/v2y2017i4p301-324.html
   My bibliography  Save this article

Correlated gamma frailty models for bivariate survival data based on reversed hazard rate

Author

Listed:
  • David D. Hanagal
  • Arvind Pandey

Abstract

Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyse the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data), the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their disadvantages correlated frailty models may be used. In this paper, we introduce the gamma correlated frailty models based on reversed hazard rate (RHR) with three different baseline distributions namely, the generalised log-logistic type I, the generalised log-logistic type II and the modified inverse Weibull. We introduce the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin dataset and a better model is suggested.

Suggested Citation

  • David D. Hanagal & Arvind Pandey, 2017. "Correlated gamma frailty models for bivariate survival data based on reversed hazard rate," International Journal of Data Science, Inderscience Enterprises Ltd, vol. 2(4), pages 301-324.
  • Handle: RePEc:ids:ijdsci:v:2:y:2017:i:4:p:301-324
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=88102
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moustafa, Kassem & Hu, Zhen & Mourelatos, Zissimos P. & Baseski, Igor & Majcher, Monica, 2021. "System reliability analysis using component-level and system-level accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Pandey Arvind & Hanagal David D. & Tyagi Shikhar, 2022. "Generalised Lindley shared additive frailty regression model for bivariate survival data," Statistics in Transition New Series, Polish Statistical Association, vol. 23(4), pages 161-176, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijdsci:v:2:y:2017:i:4:p:301-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=429 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.