IDEAS home Printed from https://ideas.repec.org/a/ids/ijdmmm/v3y2011i1p42-74.html
   My bibliography  Save this article

Kernel method for improving image retrieval performance: a survey

Author

Listed:
  • Anca Doloc-Mihu

Abstract

The subject of this paper is the kernel method, which offers an elegant solution to improve the effectiveness and the efficiency of the learning process in an image retrieval system. By simulating learning in high-dimensional feature spaces while working with the original low-dimensional input data, kernel methods provide a way for obtaining non-linear decision boundaries from algorithms previously restricted to handling only linearly separable image collections. The aim of this paper is to summarise results that have been obtained by using the kernel method in image retrieval systems. First, the paper introduces the kernel method together with some of its useful properties, and several kernel types used in fields like image retrieval, text mining, machine learning, and computational biology. Then, the paper focuses on applications and research questions involving the kernel method, such as kernel-based learning, kernel selection and feature selection methods.

Suggested Citation

  • Anca Doloc-Mihu, 2011. "Kernel method for improving image retrieval performance: a survey," International Journal of Data Mining, Modelling and Management, Inderscience Enterprises Ltd, vol. 3(1), pages 42-74.
  • Handle: RePEc:ids:ijdmmm:v:3:y:2011:i:1:p:42-74
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=38811
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijdmmm:v:3:y:2011:i:1:p:42-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=342 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.