IDEAS home Printed from https://ideas.repec.org/a/ids/ijdmmm/v13y2021i3p211-230.html
   My bibliography  Save this article

Long text to image converter for financial reports

Author

Listed:
  • Chia-Hao Chiu
  • Yun-Cheng Tsai
  • Ho-Lin Chen

Abstract

In this study, we proposed a novel article analysis method. This method converts the article classification problem into an image classification problem by projecting texts into images and then applying CNN models for classification. We called the method the long text to image converter (LTIC). The features are extracted automatically from the generated images, hence there is no need of any explicit step of embedding the words or characters into numeric vector representations. This method saves the time to experiment pre-process. This study uses the financial domain as an example. In companies' financial reports, there will be a chapter that describes the company's financial trends. The content has many financial terms used to infer the company's current and future's financial position. The LTIC achieved excellent convolution matrix and test data accuracy. The results indicated an 80% accuracy rate. The proposed LTIC produced excellent results during practical application. The LTIC achieved excellent performance in classifying corporate financial reports under review. The return on simulated investment is 46%. In addition to tangible returns, the LTIC method reduced the time required for article analysis and is able to provide article classification references in a short period to facilitate the decisions of the researcher.

Suggested Citation

  • Chia-Hao Chiu & Yun-Cheng Tsai & Ho-Lin Chen, 2021. "Long text to image converter for financial reports," International Journal of Data Mining, Modelling and Management, Inderscience Enterprises Ltd, vol. 13(3), pages 211-230.
  • Handle: RePEc:ids:ijdmmm:v:13:y:2021:i:3:p:211-230
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=118019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijdmmm:v:13:y:2021:i:3:p:211-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=342 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.